Extremal Metrics for Conformal Curvatures on S

نویسنده

  • MEIJUN ZHU
چکیده

We define two conformal structures on S which give rise to a different view of the affine curvature flow and a new curvature flow, the “Qcurvature flow”. The steady state of these flows are studied. More specifically, we prove four sharp inequalities, which state the existences of the corresponding extremal metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Non-uniqueness of Conformal Metrics with Prescribed Scalar and Mean Curvatures on Compact Manifolds with Boundary

For a compact Riemannian manifold (M, g) with boundary and dimension n, with n ≥ 2, we study the existence of metrics in the conformal class of g with scalar curvature Rg and mean curvature hg on the boundary. In this paper we find sufficient and necessary conditions for the existence of a smaller metric g̃ < g with curvatures Rg̃ = Rg and hg̃ = hg. Furthermore, we establish the uniqueness of such...

متن کامل

General Univalence Criteria in the Disk: Extensions and Extremal Function

Many classical univalence criteria depending on the Schwarzian derivative are special cases of a result, proved in [18], involving both conformal mappings and conformal metrics. The classical theorems for analytic functions on the disk emerge by choosing appropriate conformal metrics and computing a generalized Schwarzian. The results in this paper address questions of extending functions which...

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

Steady States for One Dimensional Conformal Metric Flows

We define two conformal structures on S which give rise to a different view of the affine curvature flow and a new curvature flow, the “Qcurvature flow”. The steady state of these flows are studied. More specifically, we prove four sharp inequalities, which state the existences of the corresponding extremal metrics.

متن کامل

ar X iv : d g - ga / 9 50 80 01 v 1 3 A ug 1 99 5 On the L n 2 - norm of Scalar Curvature

Comparisons on L n 2-norms of scalar curvatures between Riemannian metrics and standard metrics are obtained. The metrics are restricted to conformal classes or under certain curvature conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006